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the principal term of the asymptotic solution is continuous for all t>O,z>O. 
The technique can also be used formally in the case when the functions fi in (4.1), ci 

in (4.2) and h+ in (4.3) depend on the slow variables r,&, or non-linear conditions that are 
solved with respect to the functions aj(t, 0), j= I,..., m are considered instead of the linear 
boundary conditions (4.3). 
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EQUATIONS DESCRIBING THE PROPAGATION OF NONiLINEAR QUASITRANSVERSE WAVES 
IN A WEAKLY NON-ISOTROPIC ELASTIC BODY* 

A.G. KULIKOVSKII 

Approximate equations are obtained, describing the propagation of a non- 
linear quasitransverse wave of low amplitude, or a group of such waves, in 
a nearly isotropic elastic medium, when the characteristic velocities of 
the waves (dependent on their polarization) differ from one another by a 
small quantity. 

The equations of non-linear geometrical acoustics, and the short-wave 
equations, are well-known /l-9/; they are obtained on the basis of the 
fact that waves connected with one family of characteristic surfaces can 
be propagated. Disturbances linked with other characteristics interact 
weakly with these waves, by virtue of the assumptions that the amplitude 
is small and the waves are quasiplane. It is also important that, due to 
the small difference in the wave velocities, their interaction time is 
small, if the length of the groups of waves in question is finite. 

With small anisotropy and non-linearity, the equations of the theory 
of elasticity have two properties: the two characteristic velocities 
corresponding to quasitransverse waves are close, and the non-linearity 
is extremely small. In the absence of anisotropy (including that due to 
initial deformation), the non-linearity appears only in the cubic terms; 
while if there is small anisotropy, quadratic terms also make an appearance, 
though with small coefficients. Due to the closeness of the quasi- 
transverse wave velocities, they interact together long-term, so that the 
evolution of these waves can be studied by considering two waves simultaneously. 
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The remaining waves (given suitable assumptions about their initial 

amplitudes being small) can be excluded from consideration. The small 

non-linearity of the equations leads to the need to take a large number 

of terms into account for a correct description of the effects of non- 

linearity. 

The approximate equation for non-linear plane-polarized quasi- 

transverse elastic waves (connected with one family of characteristics of 

quasitransverse waves), propagating in an undeformed isotropic elastic 

medium, was obtained in /lo/. The paper by Cohen and Kulsrud /ll/ is 

closest in its subject to the present paper; in the context of magneto- 

hydrodynamics, they obtained an approximate system of equations, describing 

the purely one-dimensional quasitransverse waves with any polarization, 

propagating along the magnetic field. 

1. One-dimensional waves on a homogeneous background. The equations of one- 

dimensional motions in the theory of elasticity may be written as 

81'. 
po$_x & 2!$ E fij 2 

i 1 
(1.1) 

I 

Here, vi = awl/at, ui = awiiax, Wi are the displacements of particles, considered as functions 

of Lagrangian Cartesian coordinates x1, x2,zQ = z,pO istheinitialdensity in these coordinates, 

fij is the matrix corresponding to the linear isotropic medium: fil” = pv f*zO = p* fssO = h + 

2p, fij" = 0 for i # j. We assume that @ can be expanded in power series in Uj, where the 

expansion coefficients differ from the corresponding expansion for an isotropic body by 

quantities of the order of 6 (6<1 is the anisotropy parameter). 

We shall consider quasitransverse waves, in which u9 - uq' 4 &*, E = max ((ul - u,), (u2 - u,O)}, 

where the superscript _ refers to the state before the wave. It follows from the formof 0 

that g,, - gafi<x((a,p=1,2) xFlnas{E ",6}, g,, < n,a~ (~,6}, and the characteristic velocity of 

the quasitransverse waves is equal to J&/E $-O(x). Hence, with a relative error O(X), all 

the quantities in the quasitransverse wave, and in particular ul, satisfy the relation 

Lou3=0, LOS&l/;$$ 

From (1.1) with i = 3 we obtain 

(1.2) 

vI= - I/p/pOus + const 

+-&((gls-$+g23$) 

1 8P -- 
“g=- .k+p au8 + us”, us’= const 

(1.3) 

These and all subsequent equations have a realtive error with respect to the terms written 

which does not exceed x. Obviously, the above operation of finding us consists in finding 

the forced solution of Eqs.tl.1) for ug, linked with the transverse waves. The free solution, 

corresponding to longitudinal waves, is ignored here; this is permissible when the initial 

conditions, corresponding to these waves, are zero. 
Using the equation obtained in the first two of Eqs.(l.l), we obtain 

Here and below, the Greek subscripts take the values 1, 2, and the Latin subscripts the 

values 1, 2, 3. The superscript o means that the relevant quantity is taken with l+ = UQO. 

The equations obtained serve to describe the quasitransverse waves. The longitudinal gradient 

of the displacement us can be found from Eq_(1.3). 
To obtain the equations describing the propagation of transverse waves only in the 

position direction of the z axis, we make a change of variables, and introduce as required 
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functions the invariants which are preserved in linear waves in an isotropic medium, and travel 
to the right (superscript plus) and to the left (superscript minus) 

On multiplying Eqs.(l.4) by l/VFD and taking the half-difference with the fourth and 
fifth equations of (1.11, we obtain 

In the same way, taking the half-sums of the same equations, we obtain the equations for 

% . We find from these last equations that the forced solution u,-, linked with the wave 
travelling to the right (i.e., satisfying a relation of the type (1.2) L,u,- = 0), is of the 
order of Ibuy, where h =max{h,,p)- x. Hence, by the relations u~=u,~-+u,-, Loua-=O, the 

superscript plus in the first two terms of Eq.(1.6) can be dropped with tolerable accuracy, 
I.e., 

(1.7) 

The equations obtained, along with (1.3) for ue, describe quasitransverse elastic waves 
of low amplitude, travelling in the positive direction of the z axis. Notice that both (1.4) 
and (1.7) have the divergence form, corresponding to which we have the integral form of the 
relations at a discontinuity 

(1-Q) 

(F is given by Eqs.(l.41, and the 
The last relation is the same, up 
transverse momentum, which can be 
are the same if, when finding the 
of the second order of smallness 

brackets denote jumps in the quantities in the brackets). 
to the given accuracy, as the condition for conservation of 
obtained as the integral form of Eq.(1.4) (these conditions 
velocity of discontinuity W, 

P - CGJ")* 

no account is taken of a quantity 

Relation (1.9) can also be jusitifed as follows. We assume that there are extra terms 
&is/& on the right-hand sides of the equations of motion, where 7iS are components of the 
viscous stress tensor. We assume that these viscous terms are small compared with the principal 
terms of Eqs.(l.lf (in many problems of mechanics, notably in the problem of the stucture of 
a shock wave, these terms are of the same order as the non-linear terms) and that they vanish 
along with the deformation rate tensor. Then, on again performing all the calculations, we 
find that there appear in Eqs.(l.8) the viscous terms 

If a solution of the shock-wave structure type is considered, then (1.10) can again be 
integrated with respected to z from -CO to CO. Since the 'as vanish at the ends of the 
integration along with the deformation rates, we obtain as a result relations (1.91. 

Notice incidentally that, i f the initial system of equations (1.1) is augmented by any 
terms fi, small compared with the principal terms, on the right-hand sides, #en the terms 
(2fi,)-lfi appear on the left-hand sides of Eqs.(l.lO). 

Being a hyperbolic system of two equations, (1.7) can be written in terms of Riemann 
invariants /12/ 

Here, I,is the first integral of the equation 

(1.11) 

while bla, bp are the components of the eiqenvector of the matrix J$&?a, + k&I/~ 

corresponding to the eigenvalue c =, representing the characteristic velocity of system (1.7). 
In Eqs.(l.ll), this characteristic velocity is regarded as a function of 1, and I,. 



458 

2. Weakly non-one-dimensional waves in a weakly non-homogeneous medium, 
We shall study waves similar to those considered in Sect.1, but dependent only on .cg -I. As 
in Sect.1, we put Uh = Bru,!dr. We shall assume that differentiation with respect to the trans- 
verse coordinates .c,,& increases the order of smallness of the terms by a small factor '1. 
The difference in the velocities of small disturbances, connected with the anisotropy of the 
medium,willbe characterized by a smallness parameter 6. We will use the small factor 6 to 
characterize the inhomogeneity of the properties of the medium with respect to the coordinates. 
The quantities Iin and 116 are characteristic lengths. We assume that l/q< 116. The 
characteristic scale of the unit wave and of the entire group of waves in their direction of 
propagation is the same (of the order of unity). 

We shall preserve in the equations the terms of order ~~@~,6e,qe,q%,q~", Ed. The orders 
of the retained terms is chosen fairly arbitrarily, and can easily be varied so as to take 
account of higher terms. The orders here are such that all the terms used in /13, 14/ are 
retained. By taking account of terms of the order of 8, a correct description of non-linear 
processes can be ensured. Linear terms of the order of n*&, containing second derivatives 
with respect to the transverse coordinates, are needed e.g., to describe the damping of the 
waves as they diverge. The terms of the order of r$ characterize the variation of the 
non-linear effects for waves, the normals to which are directed almost along the s axis. The 
terms of the order of @E in the crudest approximation take account of the effect of the 
inhomogeneity of the properties of the medium. 

When estimating the orders, we shall assume that the initial gradients of the displacements 
dw~"/d.r,(cr, p =-= 1,2) have a higher order than F. This assumption is not essential, but on the 
one hand it simplifies later estimates, and on the other, it implies no constraints in general 
on the statement of the problem. This connected with the fact that, as was shown in /13, 14/, 
the difference between the characteristic velocities, the order of which was denoted above 
by 6, is order-wise equal to mar {du~~"/8s,} in an isotropic medium. In general, therefore, we 
can assume that 6 is greater than, or of the same order as, 8wa0/8zG. Since, according to the 
stipulation made above, the terms with 8 will only be taken into account in combinations ~6, 
this in fact implies that dwfi”i%r, is only taken into account in the lowest approximation, as 
if this quantity were of the order of E2 or I)& To be specific, we shall henceforth assume 
the latter estimate. 

We write the equations of the theory of elasticity in the three-dimensional case 

Here, wi are the particle displacements with respect to fixed Cartesian coordinates 

Xl, x*, 2, = I. The values of these coordinates, corresponding to the unstressed state, will 
be taken to be Lagrangian. The function cf, depends on w,,,, and x. The symbol 8'/6'xj denotes 
differentiation with respect to 2.j with constant v,,,,. 

We shall write (2.11, corresponding to i = 3, in the crudest approximation, i.e., in the 
same way as in the case of a homoqeneous isotropic medium; on additionally neglecting terms 
of relative order $ and replacing a2/6'ba by ppO??2/&r2 (the last operation can lead to a 
relative error ez or qe), we obtain 

The last term in this equation, as in (1.31, can be written as the derivative of a 
function with respect to x. Since only principal terms of order e need be taken into account 
in & (if we took account of terms of, say, order 6 in g,,. we should arrive in the 
final equations at terms of order 6e", which we neglect in our approximation), these expressions 
thus have the same form as in weakly non-linear one-dimensional wavesin an isotropic medium 
/13, 14/, g,, = 2b~w,/~x. The constant b is expressible in terms of the coefficients of the 
expansion of Q, with respect to invariants of the deformation tensor and is given below (Eq. 
(2.6)). 

Using the above equation for &s, the relation for i?w,/dz' can be integrated with 
respect to 5: 

By using Eq.fZ.Z), in the same way as Eq.Cl.3) in the one-dimensional case, we can 
eliminate awsirlx from the equations. In addition, the equation shows that the variation in 
the wave of the first invariant of the deformation tensor I1 is of the order of E', while the 
variation of ws is of the order of max (ne, 8'). 
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Now take Eqs.CS.1) for ~(a = 1,2). The terms of orders es,e2,e on the right-hand sides 
are the same as the corresponding terms in Eqs.(l.l), describing the one-dimensional motions. 
The terms of orders qe and qae are contained in the linear equations for the isotropic body 
and have the form 

(We do not write here the term @w,&?xa, which does not contain q). If relation (2.2) is used, 
the above expression becomes 

(2.3) 

The first term here is of the order of qea, while there are no terms of the order of qe. 
The other terms of the order of qe2, contained in the first term on the right-hand side 

of (2.11, can be written as 

( 

a'@ 
+ 

ara, 

d% saw, y 8 3 awg $awcr y wi3*~8 I * 1 

Here we omit the terms which would be obtained if y were equal to three, since they do 
not contain n (the corresponding to one-dimensional waves). In addition, we note that, by 
(2.2), the variation of ws in the wave is of the order of max {qe,e2), and hence, to obtain 
the terms of the order of qeqwe have to retain in (2.1) only those terms in which there is not 
more than one index equal to three among the indices of w,,,,,,j. 

Since w~,~* is ofthe,order of qe, it is sufficient to take account of the terms of the 
order of e in the parentheses in (2.4). This means that 6, can be taken in the same form as 
in an isotropic medium and we can confine ourselves to terms up to the third degree in Wi,j 

O= + 111~ + $2 + BIJa + yls, II= eii (2.5) 

12 = ~ijEij, Is =eiJejkeki, eij = + (Ui, j + U’j, i + Wk, i wk, j) 

Simple calculations leadtothe following expressions for the terms of the order of ne" 
in the equation for w,: 

( h + P + -$v + 2P)(w,,3a%83 + WR,3mR,aS) + 

(2P++ V)WW%W . 

Terms oftheorder of 6e can only be contained in the linear part of the last term on 
the right-hand side of (2.1). There is one such term: 2~~~,~apiax. 

Augmenting Eqs.Cl.4) by terms of the orders of q'e, qee, 6e, found above, we obtain the 
system of equtions for w,: 

(2.6) 

P ( 
a%& arwG 

w+w +2$% ) 

2~ = y + p + Vrv + 28, 2b = y + 2p + B + 3/sy, 

2c = 2p + vzy 

For the case of an elastic medium with anisotropy, caused only be small (of the order of 

8') initial deformations e& (as in /13, 14/j, h, have the form 

h 
a’F 

@-aY’ = B 
F = + (f& + fau22) - + (ula + u2y* 

0 D 
h - 2b (ell + ed i- (h + p) e&, fa = 2b (ek + es”,) + (h + P) e; 

x=lr -I- 
(P + B + -%Y) _ 25 

h+F 
ub _ aw, 

az . 

Here, 6 is the coefficients of Zaa in the expansion of @,.. We assume that err0 = 0 by 

virtue of the chosen directions of the 5, and x2 axes, while easo = 0 by virtue of the chosen 
origin of coordinates for u1 and up. 

Further, as in Sect.1, we obtain the equations describing the waves propagating only in 
the positive direction of the z axis. We introduce the velocity V, = aw,iat. Obviously, 



on introducing the variables IL,& and u,-, given by Eqs.cl.51, and taking in the same 
way as in Sect.1 linear combinations of Eqs.(2.6), the left-hand side of which is written like 
8v&t, and (2.71, we obtain for w,, connected with the waves propagating in the positive 
direction of .c axis 

Notice that only the penultimate term contains w,, not differentiated with respect to x. 
Under the same assumptions as in the ordinary case of non-linear geometrical acoustics /l-5/, 
we can express this term in terms of &&ids. We assume that, for our quasitransverse waves, 
a family of surfaces can be selected in such a way that w1 and LU* vary rapidly along the normal 
to the family (in the x direction) and vary very slowly on the surfaces themselves, which will 
henceforth be called wave surfaces. Then, neglecting the variations of w, on the wave surfaces, 
we find that, in Cartesian coordinates q, x2, x we have the equation 

where k = Ra-‘Rt-’ is the Gaussian curvature of the wave surface passing through the given 
point, and R,, R, are the principal radii of curvature of the surface; k is assumed positive 
if the surface is seen as convex in the direction of wave propagation. 

In order for the above equation to hold, the characteristic transverse dimension 1, of 
the wave pencil must satisfy the condition llz>RR1,where 1 is the wavelength, and R is the 
characteristic radius of curvature of the surface. This last approximation is typical for 
geometrical acoustics. 

In many problems, e.g., when studying divergent waves, our wave surface can be regarded 
as moving, in the same way as when non-linearity and anisotropy are neglected, i.e., at 
velocities equal to jfp/p,. The position of these surfaces can then be calculated at all 
instants, and k becomes a known function of x in curvilinear coordinates with the x axis 
orthogonal to the surfaces. For a homogeneous medium, the x axis is a straight line and 
k = k (z) = (RIO + x)-l (R,, + x)-l, where Rto-' and Rzo-’ are the initial values of the principal 
curvatures. Then, system (2.8) takes the form 

The indices a,p,u take the values 1 and 2. Summation is performed with respect to 
repeated indices. If J/p/p, # con.&, it is best to transform Eq.(2.8) or (2.10) from Cartesian 
to curvilinear coordinates, where the coordinate lines x1 and x2 lie on the wave surfaces, 
and the coordinate line x orthoqonal to them. It is also possible to write the equations at 
reference points accompanying the waves, as was done in /8, 9/. If the wave surfaces can be 
found in advance, the equations are transformed in accordance with the rules of vector 
calculus. 

Notice that, if the characteristic transverse dimension 1, of the wave pencil is'of the 
order of the radius of curvature R of the wave surfaces, then the terms containing differen- 
tiation with respect to x1 and x2 in (2.10) are of the order of E with respect to the term 
that contains k, and they can be neglected, unless effects connected with these terms need to 
be specially investigated. 

Our results can be extended to the case of a medium which is almost transversely isotropic, 
with anisotropy axis directed along the wave vector of the group of waves in question. 

The author thanks A.A. Bannin and E.I. Sveshnikov for useful discussions, and A.L. Shtaras 
for his comments. 
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SPATIAL INTERACTION OF STRONG DISCONTINUITIES IN A GAS* 

V.M. TESHUKOV 

The spatial problem of the interaction of curved fronts of strong dis- 
continuities during collision is examined for the system of gas-dynamic 
equations. In the case of regular interaction, an algorithm is indicated 
for the construction, andthe existence of a piecewise-analytic solution 
of the problem in an exact formulation is proved. The series governing 
the solution converge in a certain neighbourhood of a two-dimensional 
surface y. in the space R&(x, t), which is the intersection of surfaces of 
interacting discontinuities. It is shown #at the solution cannot be 
piecewise-analytic in the neighbourhood of those points of yc for which 
the normal velocity of the cuxve yet with respect to the gas (a section 
through ya by the plane t = const) is subsanic. 

so 
1. Formulation of the prclblem. For t SG [-- t,, tll (t is the time), let an analytic 

ution u = u, (% t), p = PO Ix, t)‘ p = p* (x* t) of the system sf gas-dynamics equations 

~1 + divpn=O, (PI), + div(pW + (VP+ =o 

(p(e+11~I~[2))~~di~pu(~+1/~Iu12)=0 (E=L2,3) 

(1.f) 

be known in the domain .sZ c R4 (x,t)(x = (xlrx2,xJ) E R3,tER) (u = (u,, uQ, uSf is the velocity 
vector, p is the density, p is the pressure, e is the specific internal energy, and i=E+p 
p-* is the specific enthalpy). The functions e = e(u, p), p = ~(v, s) (here v = p-1 and s is 
the entropy) that give the equation of state ofthemedium are analytic and satisfy the normal 
gas conditions /'l/. The fronts of two strong discontinuities propagate over the background 
"null", where the surfaces of discontinuity ricR4 (x,t) and the solutions behind the fronts 
u = uj (x, t), p = pJ (x, t), p = pJ (x, t) (j = 1, 2) are analytic- (The discontinuities axe concentrated 
on the hypersurfaces I*, in the space Rd(x,t). Sections rjt through these surfaces by the planes 
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